Clinical outcomes and toxicity of proton beam therapy for advanced cholangiocarcinoma
نویسندگان
چکیده
BACKGROUND We examined the efficacy and toxicity of proton beam therapy (PBT) for treating advanced cholangiocarcinoma. METHODS The clinical data and outcomes of 28 cholangiocarcinoma patients treated with PBT between January 2009 and August 2011 were retrospectively examined. The Kaplan-Meier method was used to estimate overall survival (OS), progression-free survival (PFS), and local control (LC) rates, and the log-rank test to analyze the effects of different clinical and treatment variables on survival. Acute and late toxicities were assessed using the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. RESULTS The median age of the 17 male and 11 female patients was 71 years (range, 41 to 84 years; intrahepatic/peripheral cholangiocarcinoma, n = 6; hilar cholangiocarcinoma/Klatskin tumor, n = 6; distal extrahepatic cholangiocarcinoma, n = 3; gallbladder cancer, n = 3; local or lymph node recurrence, n = 10; size, 20-175 mm; median 52 mm). The median radiation dose was 68.2 Gy (relative biological effectiveness [RBE]) (range, 50.6 to 80 Gy (RBE)), with delivery of fractions of 2.0 to 3.2 Gy (RBE) daily. The median follow-up duration was 12 months (range, 3 to 29 months). Fifteen patients underwent chemotherapy and 8 patients, palliative biliary stent placement prior to PBT. OS, PFS, and LC rates at 1 year were 49.0%, 29.5%, and 67.7%, respectively. LC was achieved in 6 patients, and was better in patients administered a biologically equivalent dose of 10 (BED10) > 70 Gy compared to those administered < 70 Gy (83.1% vs. 22.2%, respectively, at 1 year). The variables of tumor size and performance status were associated with survival. Late gastrointestinal toxicities grade 2 or greater were observed in 7 patients <12 months after PBT. Cholangitis was observed in 11 patients and 3 patients required stent replacement. CONCLUSIONS Relatively high LC rates after PBT for advanced cholangiocarcinoma can be achieved by delivery of a BED10 > 70 Gy. Gastrointestinal toxicities, especially those of the duodenum, are dose-limiting toxicities associated with PBT, and early metastatic progression remains a treatment obstacle.
منابع مشابه
Proton beam therapy with high-dose irradiation for superficial and advanced esophageal carcinomas.
PURPOSE With the aim of improving the results of treatment for esophageal carcinoma, we have investigated the efficacy and toxicity associated with the use of a 250-MeV proton beam for radical radiation therapy in esophageal carcinoma. EXPERIMENTAL DESIGN Thirty patients with esophageal carcinoma (superficial, n = 13; advanced, n = 17) had been treated with proton beam therapy alone or with p...
متن کاملInvestigation of tumor motion influence on applied dose distribution in conventional proton therapy vs. IMPT a 4D Monte Carlo simulation study
Background: in radiation treatment of moving targets located in thorax region of patient body, the delivered dose does not match with the planned treatment, resulting in some over and under dosage in the tumor volume, as a function of motion magnitude and frequency. Several efforts have been done to investigate the target motion effects on dose distribution in the target and surrounding normal ...
متن کاملProton Therapy of eye using MCNPX code
Introduction: Proton radiotherapy is the one of advanced teletherapy methods. The protons deposit their maximum energy in a position called Bragg peak. Therefore, for treatment of cancer, the tumor should be placed at the Bragg peak or SOBP. The scattered photons and neutrons is a challenge in proton radiotherapy. The aim of this study is calculation of absorbed dose from scatt...
متن کاملA new model for Spread Out Bragg Peak in proton therapy of uveal melanoma
In this research, in order to improve our calculations in treatment planning for proton radiotherapy of ocular melanoma, we improved our human eye phantom planning system in GEANT4 toolkit. Different analytical models have investigated the creating of Spread Out Bragg Peak (SOBP) in the tumor area. Bortfeld’s model is one of the most important analytical methods. Using convolution method, a new...
متن کاملSecondary Particles Produced by Hadron Therapy
Introduction Use of hadron therapy as an advanced radiotherapy technique is increasing. In this method, secondary particles are produced through primary beam interactions with the beam-transport system and the patient’s body. In this study, Monte Carlo simulations were employed to determine the dose of produced secondary particles, particularly neutrons during treatment. Materials and Methods I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014